
Awakening Decentralised Real-time
Collaboration: Re-engineering Apache Wave into
a General-purpose Federated & Collaborative

Platform

Pablo Ojanguren-Menendez, Antonio Tenorio-Fornés, and Samer Hassan

GRASIA: Grupo de Agentes Software, Ingenieŕıa y Aplicaciones, Departamento de
Ingenieŕıa del Software e Inteligencia Artificial, Universidad Complutense de Madrid,

Madrid, 28040, Spain {pablojan, antonio.tenorio, samer}@ucm.es

Abstract. Real-time collaboration is being offered by plenty of libraries
and APIs (Google Drive Real-time API, Microsoft Real-Time Commu-
nications API, TogetherJS, ShareJS), rapidly becoming a mainstream
option for web-services developers. However, they are offered as cen-
tralised services running in a single server, regardless if they are free/open
source or proprietary software. After re-engineering Apache Wave (for-
mer Google Wave), we can now provide the first decentralised and fed-
erated free/open source alternative. The new API allows to develop new
real-time collaborative web applications in both JavaScript and Java en-
vironments.

Keywords: Apache Wave, API, Collaborative Edition, Federation, Op-
erational Transformation, Real-time

1 Introduction

Since the early 2000s, with the release and growth of Wikipedia, collaborative
text editing increasingly gained relevance in the Web [1]. Writing texts in a
collaborative manner implies multiple issues, especially those concerning the
management and resolution of conflicting changes: those performed by different
participants over the same part of the document. These are usually handled with
asynchronous techniques as in version control systems for software development
[2] (e.g. SVN, GIT), resembled by the popular wikis.

However, some synchronous services for collaborative text editing have arisen
during the past decade. These allow users to write the same document in real-
time, as in Google Docs and Etherpad. They sort out the conflict resolution issue
through the Operational Transformation technology [3].

These services are typically centralised: users editing the same content must
belong to the same service provider. However, if these services were federated,
users from different providers would be able to edit contents simultaneously. Fed-
erated architectures provide multiple advantages concerning privacy and power



distribution between users and owners, and avoid the isolation of both users and
information in silos [4].

The rest of this paper is organised as follows: first, Operational Transforma-
tion frameworks’ state of the art is outlined in Section 2. Section 3 depicts the
reengineering approach and used technologies and tools. Concepts of the Wave
Platform and changes made are explained in Section 4. Afterwards, the results
are discussed in Section 5. Finally, conclusions and next steps are presented in
Section 6.

2 State of the Art of Real-time Collaboration

The development of Operational Transformation algorithms started in 1989 with
the GROVE System [5]. During the next decade many improvements were added
to the original work and a International Special Interest Group on Collaborative
Editing (SIGCE) was set up in 1998. During the 2000s, OT algorithms were
improved as long as mainstream applications started using them [6].

In 2009, Google announced the launch of Wave [7] as a new service for live
collaboration where people could participate in conversation threads with col-
laborative edition based on the Jupiter OT system [8]. The Wave platform also
included a federation protocol [9] and extension capabilities with robots and
gadgets. In 2010 Google shutted down the Wave service and released the main
portions of the source code to the Free/Open Source community. Since then, the
project belongs to the Apache Incubator program and it is referred as Apache
Wave. Eventually, Google has included Wave’s technology on some other prod-
ucts, such as Google Docs. Despite its huge technological potential, the final
product had a very constrained purpose and hardly reusable implementation.

Other applications became relevant during that time, such as the Free Libre
Open Source Software (FLOSS) Etherpad. However, it was mostly after the
Google Wave period when several FLOSS OT client libraries appeared, allowing
integration of real-time collaborative edition of text and data in applications.
The most relevant examples are outlined as follows.

TogetherJS [10] is a Mozilla project that uses the WebRTC protocol for peer-
to-peer communication between Web browsers in addition to OTs for concur-
rency control of text fields. It does not provide storage and it needs a server
in order to establish communications. It is a JavaScript library and uses JSON
notation for messages.

ShareJS [11], is a server-client platform for collaborative edition of JSON
objects as well as plain text fields. It provides a client API through a JavaScript
library.

Goodow [12], is a recent FLOSS framework copying the Google Drive Real-
Time API with additional clients for Android and iOS, while providing its own
server implementation.

On the other hand, Google provides a Real-Time API as part of its Google
Drive SDK [13]. It is a centralised service handling simple data structures and
plain text.



In general, these solutions are centralized. Despite their claim of focusing in
collaboration, users from different servers cannot work or share content. They
just provide concurrency control features without added value services like stor-
age and content management. They mostly allow collaborative editing of simple
plain text format.

3 Reengineering: technologies and tools

This section summarises the procedure followed to re-engineer and build a generic
Wave-based collaborative platform, together with the technologies used.

Wave in a Box [14] is the FLOSS reference implementation of the Apache
Wave platform, which supports all former Google Wave protocols and specifica-
tions [15] and includes both implementations of the Server and the Client user
interface. Most of its source code is original from Google Wave and was provided
by Google, although it was complemented with parts developed by community
contributors.

In particular, the Client part has been used as ground to develop the new
API, with same technologies: Java and the Google Web Toolkit (GWT) FLOSS
framework [16]. The Client is written in Java but is compiled and translated into
JavaScript by GWT in order to be executed in a web-browser.

The lack of technical documentation forced to perform a preliminar extensive
source code analysis outcoming documentation and UML diagrams. Then, ini-
tial developments within the Wave client were performed to assess whether the
Apache Wave implementation could be used to develop new applications within
fair parameters of quality and cost.

New general functionality was added in separated components, on top of
underneath layers such as the federation protocol and server storage system. This
has proved the feasibility of reusing the original code and Wave core features.
The new source code is GWT-agnostic in order to be reusable in Java platforms.
GWT is used to generate just the top JavaScript layer.

Concerning software testing, the JavaScript framework Jasmine [17] was used
in addition to existing unit tests. The developed test suite for the API attacks the
public API functions in a web-browser environment testing new layers together
with the rest of the architecture stack.

The development has been tracked and released in a public source code repos-
itory [18]. It includes documentation and examples on how to use the API. Be-
sides, during the development process, several contributions have been made to
the Apache Wave Open Source community, in the form of source code patches,
documentation and diagrams.



4 Generalising the Wave Federated Collaborative
Platform

This section shows the fundamentals of the Wave platform and how they have
been used to turn Wave into a general-purpose platform unlike the former
conversation-based one.

4.1 Conversations: Wave Data Models & Architecture

This subsection exposes the conversation approach of Apache Wave, its data
models and general architecture. From a logical point of view, the Wave platform
handles two data models: the Wave Data Model [19] and the Wave Conversa-
tional Model [20]. First, the Wave Data Model defines general data entities used
within the platform:

– Participant: user of the platform. It may be a human or a robot [7].
– Document: recipient of collaborative real-time data.
– Wavelet: set of Documents shared by a set of Participants.
– Wave: set of Wavelets sharing the same unique identifier.

Documents are the smallest entity that can store data which can be edited in
a collaborative way. Documents are logically grouped in Wavelets. In addition, a
Wavelet has a set of participants, which are able to access –read and edit– those
Documents. Finally, the Wave Data Model defines the Wave concept as just a
group of Wavelets sharing the same Wave identifier.

Data is represented in XML and the Wave Operational Transformation (OT)
system [21] provides the concurrency control and consistency maintenance for
editing this XML in a Document by multiple users at the same time. It also gen-
erates events to notify changes to other parts of the system, locally or remotely.
XML is used to represent two types of data: rich Structured Text in a HTML-like
format and Abstract Data Types (ADTs) like maps, lists, sets, etc.

On the other hand, the Wave Conversational Model was defined to manage
Conversations, the major concept of the Wave product. A Conversation is a
Wavelet having a set of participants, and a set of Documents supporting the
Conversation Thread. A Conversation Thread is compound of Documents stor-
ing paragraphs as Structured Text and a Document storing the tree-structure
of those paragraphs using ADTs. Conversation Metadata is also stored as a
Document using ADTs. This schema is summarised below in Figure 2.

Those data models are implemented in separated layers of the Wave Client
architecture as it is shown in Figure 1. All the components of this architecture
are developed, packaged and deployed as an unique Java/GWT application.

4.2 General-Purpose Collaboration: Generalising the Wave Data
Model & Architecture

Last section outlined the Wave’s general data model that could be used in al-
ternative ways. This section introduces a general approach to use it (the Wave
Content Model) and a mechanism to consume it (the Wave Content API).



Fig. 1. Wave Client architecture

The Wave Content Model This is a new general-purpose and dynamic data
model replacing the former Wave Conversational Model (see Figure 2). It allows
to edit Abstract Data Types collaboratively on real-time by different users.

Conversation 
Thread

Conversation
Paragraphs 

Structured 
Data Document Text Documents

Wavelet
(Conversational Model)

Root Map
List 

Structured 
Documents (ADTs)

Wavelet
(Content Model)

String 

Map 
String 

Fig. 2. Wave Data models

The main task was to develop a suitable layer that allows to dinamically
create and handle ADTs within Documents of a Wavelet. ADTs are Java classes
managing part of the Document content in a particular way. They can be com-
bined declaring new compound types. The Conversation Thread implementation
is an example of inmutable compound type as long as inner data structure can’t
be change on execution.

However, to provide a dynamic composition of ADTs, a Composite pattern
[22] is applied. Such pattern defines a hierarchy of data types that can be com-
bined and nested: map, list and string values. Each type is backed by the match-
ing ADT; these new data types control where and how to create and handle
ADTs instances within Documents:

This dynamic model is named the Wave Content Model. For the shake of
clarity, a Wave is now called Content Instance, and it provides a main Wavelet
where arbitrary data types can be stored dynamically starting from a provided



root map. Applications can add new instances of lists and maps to this root or
their nested lists and maps, and eventually store string values.

From the architecture perspective, all existing components related to Conver-
sations have been discarded. In particular, the two top layers of the architecture
have been replaced (see Figure 1). First, the Wave Conversational Model by
the new Wave Content Model. Second, in order to consume the new model in a
general way -not just by one single application- the old client is replaced by an
API as it is depicted below.

The Wave Content API With the new Wave Content Model any application
could use collaborative data structures. However, according to the technology
used in the Apache Wave implementation, just new Java or GWT Web Applica-
tions could use them directly. With the aim of delivering these new capabilities
to any Web Application developed in any technology, a JavaScript API has been
built.

Although GWT eventually translates Java code into JavaScript, this is not
suitable to be consumed directly by non-GWT JavaScript code in a web-browser
environment, for several reasons: the exception handling is not understood by
outer code, and GWT-generated JavaScript syntax is obfuscated.

JSNI and Overlay Types [16] are features of GWT allowing to write arbitrary
native JavaScript code and objects integrated transparently with Java code.
These features have been used to develop a native JavaScript layer, following
the Proxy pattern, which exposes the Wave Content Model functionality as an
API. A summary of the features provided by the API follows:

Session management: controls user authentication and life cycle of content
instances and

Content Instance management: Maps, lists and strings are created through
a provided factory and a root map is provided as a hook.

Data types management: exposes type-specific operations such as the addi-
tion of an element to a list or getting map keys.

5 Discussion

This paper introduces the only federated platform for real-time collaboration
available nowadays. However, using Wave as its starting point involves some
issues.

There are several critiques concerning the complexity of the Wave OT sys-
tem [11]. Its highly complex implementation –together with the lack of good
documentation– causes the maintenance of the source code to be a hard task.
However, OT systems are inherently complex and to design OT-based languages
and control algorithms require knowledgeable people.

Some existing OT implementations are simpler, using the JSON language and
a smaller set of OT operations [11] [12]. In contrast, Wave uses XML dialects
that supports both, rich text edition straight away and structured data, instead



of just plain text and JSON. Wave is the only open OT system providing full
rich text and text annotations.

Regarding the API design, it works with data structures (map, list) –as the
Google Drive Real-Time API–, in contrast with direct JSON objects. It is hard
to conclude which approach is more appropriate for third-party developers since
the lack of information about the adoption level and critics in both cases.

Java/GWT as implementation language and Jetty as the HTTP server [23],
could be seen as a pitfall as long as nowadays trends are to develop using
JavaScript directly and to use high-performance servers. However, GWT is still
a highly adopted and mature project which a strong community. And from the
server perspective, it would be easy to adapt the code to run in non-blocking IO
servers [24], extending the life of the original source code.

6 Concluding Remarks

A federated platform to develop web applications with real-time collaborative
editing capabilities has been presented in the previous sections. It has been
developed as a generalisation of the Apache Wave platform, the FLOSS project
formerly known as Google Wave.

Nowadays there is no other federated (or distributed) platform for real-time
collaboration. Moreover, this work takes the Wave Federation Protocol further,
making it a general protocol. Thus, now on top of the Wave Content Model
anyone can define new inter-operable collaborative data formats for text doc-
uments, spreadsheets, drawings, games, social media, social activity, etc. New
applications could adopt them using an existing provider or becoming a new
one. Providers can scale on interoperability since OT storage system is agnostic
from underlaying content. Clients just need to be aware of data formats.

The provided API is a functional alternative to existing collaborative plat-
forms. It provides a full-stack of software ready to be deployed, with functionali-
ties only comparable with the proprietary Google Drive Real-Time API. Features
such as the participation model, content storage and capabilities to search and
manage contents, are already included in the Apache Wave platform but not
implemented in any alternative.

The API is offered in JavaScript, to be integrated in web applications. Be-
sides, a Java version will be soon released, in order to allow also Android and
Java applications to have collaborative capabilities.

This work shows the unexplored high potentials of Google’s original devel-
opment, in spite of its complexity and lack of documentation. Thus, this work
steps out engineering challenges for reusing Apache Wave and we hope it paves
the way for other researchers and developers.

Acknowledgments

This work was partially supported by the Framework programme FP7-ICT-2013-
10 of the European Commission through project P2Pvalue (grant no.: 610961).



References

1. West, J.A., West, M.L.: Using Wikis for Online Collaboration: The Power of the
Read-Write Web. John Wiley & Sons (2008)

2. Berliner, B.: CVS II: Parallelizing software development. In: USENIX Winter 1990
Technical Conference, Berkeley, USA, USENIX (1990) 341–352

3. Sun, C., Ellis, C.: Operational transformation in real-time group editors: Issues,
algorithms, and achievements. In: Proceedings of the 1998 ACM Conference on
Computer Supported Cooperative Work, New York, ACM (1998) 59–68

4. Yeung, C., Liccardi, I., Lu, K., Seneviratne, O., Berners-Lee, T.: Decentralization:
The future of online social networking. In: W3C Workshop on the Future of Social
Networking Position Papers, W3C (2009)

5. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. In: Proceedings
of the 1989 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’89, New York, NY, USA, ACM (1989) 399–407

6. Bigler, M., Raess, S., Zbinden, L.: ACE - a collaborative editor.
http://sourceforge.net/projects/ace/

7. Ferrate, A.: Google Wave: Up and Running. O’Reilly Media, Inc. (2010)
8. Nichols, D.A., Curtis, P., Dixon, M., Lamping, J.: High-latency, low-bandwidth

windowing in the jupiter collaboration system. In: Proceedings of 8th ACM Sympo-
sium on User Interface and Software Technology, New York, ACM (1995) 111–120

9. Baxter, A., Bekmann, J., Berlin, D., Gregorio, J., Lassen, S., Thoro-
good, S.: Google Wave Federation Protocol Over XMPP. http://wave-
protocol.googlecode.com/hg/spec/federation/wavespec.html (2009)

10. Mozilla Labs: Togetherjs. https://togetherjs.com/
11. Joseph, G.: ShareJS. http://sharejs.org/
12. Chuanwu, T.: Google docs–style collaboration via the use of operational trans-

forms. https://github.com/goodow
13. Google Inc.: Google Drive SDK: Realtime API.

https://developers.google.com/drive/realtime/
14. North, A.: Google Wave Developer Blog: Wave open source next steps: Wave

in a Box. http://googlewavedev.blogspot.com.es/2010/09/wave-open-source-next-
steps-wave-in-box.html (2010)

15. Google Inc.: Google Wave Protocol. http://www.waveprotocol.org/
16. Cooper, R., Collins, C.: GWT in Practice. Manning Publications (2008)
17. Pivotal Labs: Jasmine, Behavior-Driven JavaScript. http://jasmine.github.io/
18. Ojanguren-Menendez, P.: Real-time collaboration API for Wave.

https://github.com/P2Pvalue/incubator-wave
19. North, A.: Wave model deep dive. https://cwiki.apache.org/confluence/display/WAVE/Wave+Summit+Talks

(2010)
20. Gregorio, J., North, A.: Google Wave Conversation Model. http://wave-

protocol.googlecode.com/hg/spec/conversation/convspec.html (2009)
21. Lassen, S., Mah, A., Wang, D.: Google Wave Operational Trans-

formation. http://wave-protocol.googlecode.com/hg/whitepapers/operational-
transform/operational-transform.html (2010)

22. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Pearson Education (1994)

23. The Jetty Project: Jetty. http://www.eclipse.org/jetty/
24. Roth, G.: Architecture of a highly scalable nio-based server.

https://today.java.net/pub/a/today/2007/02/13/architecture-of-highly-scalable-
nio-server.html (2007)


